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LETTER TO THE EDITOR 

Band to band hopping in one-dimensional maps? 

Scott J ShenkerS and Leo P Kadanoff 
The James Franck Institute and The Department of Physics, The University of Chicago, 
Chicago, Illinois 60637, USA 

Received 19 November 1980 

Abstract. One-dimensional maps have chaotic bands which may merge at critical values of 
the control parameter, a. Just after the merger, one can define a band-to-band hopping 
time, which diverges as la - a,/-”Z for a map with a zth-order maximum. Numerical data 
are presented to support this conclusion. 

It is now widely believed that one-dimensional recursion relations 

x n  +I = f a  ( x n )  (1) 
where fa has a single maximum provide important clues as to the nature of the onset of 
chaos in dissipative dynamical systems. Consequently, there has been much effort 
devoted to describing the properties of these maps, and investigating their implications 
for real systems. Most of the work has focused on the U-sequence of stable periodic 
cycles (Metropolis et a1 1973) that arise as the parameter a is varied. The sequence of 
period doubling bifurcations, and its universal scaling behaviour, has received parti- 
cularly intense scrutiny (Feigenbaum 1978, 1979a, Coullet and Tresser 1978a, b, 
Derrida et a1 1979). The relevance of this work for real systems has been strikingly 
demonstrated by recent experiments bn stressed fluids which have revealed a similar 
subharmonic bifurcation structure (Libchaber and Maurer 1979, Gollub et al 1980; see 
also Feigenbaum 1979b, 1980). 

The asymptotic nature of the recursion relation changes drastically as we vary a 
through a m ,  the accumulation point of the first infinite sequence of period doubling 
bifurcations. The envelope of the Lyapunov exponent becomes non-zero for a > am, 
and we thus expect chaotic behaviour (Huberman and Rudnick 1980, Chang and 
Wright 1980). It is important to note that throughout the a >am regime there are an 
infinite number of stable cycles (the remainder of the U-sequence). However, available 
evidence indicates that the set of a’s for which there are no stable cycles has positive 
measure, and it is on this set that the Lyapunov exponent will be positive (Lorenz 1979, 
Collet and Eckman 1980). 

While the a > am regime may be chaotic in some sense, recent papers have focused 
on the residual order contained in the band structure (Lorenz 1980, Huberman and 
Rudnick 1980, Changand Wright 1980, Coullet and Tresser 1980). The band structure 
is essentially a mirror image of the period doubling bifurcation structure, except that the 
periodic cycling is now between bands rather than distinct points. While there is no 
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experimental evidence for the relevance of this phenomenon for real systems, Lorenz 
(1980) and Crutchfield et al(1980) have obtained evidence indicating that some of the 
sharp spectral lines for certain differential equations are due to the ‘noisy periodicity’ of 
the band structure. In this Letter, we investigate how the noisy periodicity breaks down 
when the bands begin to merge. 

Consider the family of one-dimensional recursion relations 

xn+1=fa(xn)=1-aIx,I” (2) 

defined for x n  E [-1,1], a E [0,2] and an arbitrary power z > 0. For a particular value of 
a, there is an m-band structure if m is the greatest integer for which there exist m finite 
disjoint intervals Ii such that 

(1) O E I O  

(2) f(Ii2 = d+l  O ~ i c m - 2  (3) 

(3) f V m - 1 )  =Io. 
If we let a2 denote the value of a for which f z z  (0) = E z  (0) then, for 1 < a < a2, the two 
intervals Io, Il defined below are disjoint and map into each other under f :  

Io(a) = E(O),f2a(O)I Il(a) = Cfa(O) ,  fml. (4) 

We have at least a two-band structure; i.e. if we take any initial point xo E I, and apply f 
repeatedly, the resulting iterates will alternate between Io and 11. When a > a2, the 
regions are no longer disjoint and the two bands have merged into a single band (see 
figure 1). Now, the alternating pattern of xi  will eventually break down. However, the 
average number of iterations A needed for this to happen becomes very large for a close 
to a;?; in fact, n CC (a - a2)-”’. To study this phenomenon in detail it is more convenient 
to concentrate on the function f i ( x ) .  If we are in a two-band regime, fi maps IO onto 

1- 

0- 
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itself so that all double iterates x 2 i  of x o  will remain trapped in lo. When the bands are 
merged, the iterates will eventually hop out of 10 into 11, and it is this band-to-band 
hopping process that interests us. 

Yorke and Yorke (1979) have made a detailed study of a similar problem, that of 
metastable chaos. They show that for an invariant distribution of initial conditions xo in 
Io, the function 4 ( n )  giving the fraction of points which hop out of Io on the nth iteration 
is an exponential 

4 ( n )  = ( I / A )  e-'"' ( 5 )  

and that the average hopping time f i  diverges as 
A x E - l / z  

where E = a - a 2 .  
This theory was tested numerically for three values of z : t = 4, z = 2, t = $. For a 

particular value of E ,  the average diffusion time was found by averaging the diffusion 
times of 200 initial points distributed evenly over Io. Data were collected for more than 
30 values of E for each value of z ,  and then fitted to a curve @ ( E )  =A&-'. The results for 
the coefficients A and y are listed in table 1. 

This theory has interesting implications for correlation functions of the form 

F ( n )  = ( x f " ( x ) ) - ( x ) 2  (7) 
where the brackets denote an average over an invariant distribution. For a < am (or any 

Table 1. Numerical results for the coefficients A and y in the relation A = A e P .  

Theoretical 
prediction 

A Y for y 

z = 4  2.34i0.19 0.261 rt0.013 0.25 
2 = 2  1.55 rt0.21 0.514i0.015 0.5 
z = y  0.86rt0.11 0.898i0.021 0.9 
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Figure 2. Correlation function F ( n )  computed for E = 4 x 
iterations. 

(.ii -85). n is the number of 
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a for which a stable cycle exists), F ( n )  remains non-zero as n +,CO. Also, when 
a, < a < a2, F ( n )  has non-trivial long-time behaviour due to the alternating nature of 
the band structure (Grossman and Thomae 1977). However, for a slightly above a2,  
the exponential decay in the band structure produces an exponential decay in the 
correlation function: 

F ( ~ ) K ( - I ) "  e-"/' (8) 

(see figure 2). Thus, the Fourier transform $ ( U )  of F ( n )  will have a sharp peak at w = T 
for a < a2,  and this line will broaden into a Lorentzian shaped peak with linewidth 
proportional to E ' I z  for E = a - a2 > 0.  
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